

Materials characterization at the nanoscale by X-ray spectrometry

Burkhard Beckhoff

Physikalisch-Technische Bundesanstalt

Abbestraße 2-12, 10587 Berlin, Germany

NanoInnovation 2016 23 September 2016 Rome, Italy

- analytical challenges for nanotechnologies
- reference-free x-ray spectrometry
- surface contamination and nanolayer characterization
- depth profiling at grazing incidence
- chemical speciation at buried interfaces
- towards in-situ speciation of bulk-type films
- high-resolution spectrometry

- dozens of new nanoscaled materials appear every month
- technology R&D cycles for new materials down to 4 months
- need for correlation of material properties with functionality
- requirements on sensitivity, selectivity and information depth
- most analytical methodologies rely on reference materials or calibration standards but there are only few at the nanoscale
- usage of calibrated instrumentation and knowledge on atomic data enables reference-free techniques such as SR based XRS

Challenges for nanotechnologies – nano-scaled reference materials

Nanoscaled Reference Materials (in line with ISO/TC 229 Nanotechnologies)

,Reference materials are the key to guaranteeing realiability and correctness for results of chemical analyses and technical measurements.'

Categories:

- flatness
- film thickness
- single step , periodic step, step grating
- lateral X-Y-axis, 1-dim
- lateral X-Y-axis, +2-dim,
- critical dimensions
- 3-dimensional
- nanoobjects/nanoparticles/nanomaterial
- nanocrystallite materials
- porosity
- depth profiling resolution

Every month several tens new nanoscaled materials appear.

The number of nanoscaled reference materials is considerably lower.

Reference-free / first principles

based methodologies can address

this increasing gap.

www.nano-refmat.bam.de/en/

Challenges for nanotechnologies – nano-scaled reference materials

Nanoscaled Reference Materials (in line with ISO/TC 229 Nanotechnologies)

,Reference materials are the key to guaranteeing realiability and correctness for results of chemical analyses and technical measurements.

Categories:

flatness

film thickness

- single step , periodic step, step grating
- lateral X-Y-axis, 1-dim
- lateral X-Y-axis, +2-dim,
- critical dimensions
- 3-dimensional
- nanoobjects/nanoparticles/nanomaterial
- nanocrystallite materials
- porosity
- depth profiling resolution

Description	Certified values (nm)	RM name	RM type	RM no.
Ti-Al multilayer 100/250 nm on 100Cr6 steel substrate	100	BAM L-100	CRM	12
Thickness standards, tantalum pentoxide film Calibration of depth-resolving surface analysis	30	BCR-261	CRM	13
<u>Thickness standard, silicon dioxide film</u> NIST traceable	(2, 4.5, 7.5, 12, 25, 50,)	FTS	RM	3
<u>Thickness standards, silicon nitride film</u> NIST traceable	20	NFTS	RM	10
Thickness standards, tungsten film For best performance with sonar technology, an oxide layer 100 nm thick is added between the silicon substrate and the metal film, traceable to NIST	200	WFTS	RM	11
GaAs/Al/As-superlattice Calibration of depth resolution	23	CRM 5201-a	CRM	32
<u>SiO2/Si multilaver film reference material</u> Consist of five layers with SiO2 and Sigrown using r.f. magnetron sputtering method on aSi substrate. The thickness of each layer is certified in units of length via X-ray reflectometry, control the precision of analysis and to regulate measurement condition in depth profile analysis by ion	20	NMIJ CRM 5202-a	CRM	54
GaAs/AIAs super lattice The CRM has six-layer-structure and the certified values for the thickness from the second to sixth layer are given; control the precision of analysis and to regulate measurement condition in depth profile analysis by ion sputtering	9,51	NMIJ CRM 5203-a	CRM	55
Ultrathin silicon dioxide film 3.49 nm (0.19 nm); control the precision of analysis and to regulate measurement condition in depth profile analysis by ion sputtering	3,49	NMIJ CRM 5204-a	CRM	56

www.nano-refmat.bam.de/en/

Synchrotron radiation based x-ray spectrometry

Phys. Rev. Lett 113, 163001 (2014)

Determination of L-shell photoionization cross sections

X-ray and IR spectrometry

R

Phys. Rev. Lett **113**, 163001 (2014)

Comparison of different PCS data for Mo

Tuning the analytical sensitivity and information depth by means of appropriate operational parameters

X-ray and IR spectrometry

 E_0 = photon energy of excitation radiation E_1 = photon energy above absorption edge E_f = photon energy of fluorescence radiation

XSW = X-ray Standing Wave field

J. Anal. At. Spectrom. 23, 845 (2008)

Novel XRS instrumentation for advanced materials characterizations with synchrotron radiation

PTB XRS intrumentation at BESSY

9-axis manipulator and chamber ensuring

- the entire TXRF, GIXRF and XRF regime
- polarization-dependent speciation by XAFS
- combined GIXRF and XRR investigations
- movable aperture system for reference-free XRF and atomic FP determinations

Transfer of modified instrumentation to

- TU Berlin for a laboratory plasma source
- LNE/CEA-LNHB for **SOLEIL storage ring**
- IAEA (UN) for **ELETTRA** storage ring

Janin Lubeck et al.,

Rev. Sci. Instrum. 84, 045106 (2013)

TXRF spectra deconvolution

including Si(Li) detector response functions, RRS, and bremsstrahlung contributions.

reference-free TXRF **quantitation**: known incident flux, detector efficiency and solid angle.

spin-coated wafer with 10¹² cm⁻² of various transition metals

Anal. Chem. **79**, 7873 (2007)

Phys. Stat. Sol. B **246**,1415 (2009)

mass deposition m_i/F_I of the element *i* with unit area F_I

$$\frac{m_{i}}{F_{I}} = \frac{-1}{\mu_{tot,i}} \ln \left\{ 1 - \frac{P_{i}}{P_{0,Wsurf} \tau_{i,E_{0}} Q \frac{\Omega_{det}}{4\pi} \frac{1}{\sin\psi_{in}} \frac{1}{\mu_{tot,i}}} \right\}$$

photon energy of the incident (excitation) radiation

radiant power of the incident radiation

signal of the photodiode measuring the incident radiation

spectral responsitivity of the photodiode

 $\sigma_{{\scriptscriptstyle diode},E_0}$

 $P_0 = S_0 / \sigma_{diode, E_0}$

 E_0

 S_0

Analytical Chemistry 79, 7873 (2007)

mass deposition m_i/F_I of the element *i* with unit area F_I

$$\frac{m_{i}}{F_{I}} = \frac{-1}{\mu_{tot,i}} \ln \left\{ 1 - \frac{P_{i}}{P_{0,Wsurf} \tau_{i,E_{0}} Q^{\frac{\Omega_{det}}{4\pi} \frac{1}{\sin\psi_{in}} \frac{1}{\mu_{tot,i}}} \right\}$$

 ω_{Xi} fluorescence yield of the absorption edge *Xi* (of the element *i*) $g_{l,Xi}$ transition probability of the fluorescence line *l* belonging to Xi j_{Xi}

jump ratio at the absorption edge Xi

$$Q = \omega_{Xi} g_{l,Xi} (j_{Xi}-1) / j_{Xi}$$

Analysis of contamination on novel materials (Ge, SOI, InGaAs, ...) or of nanolayered systems (buried interfaces - photovoltaics) \rightarrow calculation of the x-ray standing wave field

nal. Chem. **79**, 7873 (2007)

Traceable quantification of functionalized surfaces by means of reference-free TXRF analysis

- Organo-silanes for surface functionalization : aminated monolayers with a controlled density of functional and reactive groups
- determination of molecular surface density by means of reference-free TXRF analysis
- traceable quantification based on usage of specific elements as markers (here: nitrogen)
- validation of other methods, e.g. XPS

C. Streeck, A. Nutsch

Organo-silanes for surface functionalization:

Samples	Silane density molecules/nm ²
100 % APDIPES	2.3
1:1 CPDMMS / APDIPES	2.4
100 % CPDMMS	2.1
pure glass	-

Anal. Chem. 87, 2685 (2015)

Traceable quantification of functionalized surfaces by means of reference-free TXRF analysis

-50

200

450

X-ray and IR spectrometry

Ο Κα

—2 ----1

500

-- blank

600

marker element

contaminations

300

C Κα

for organo-silanes

ΝΚα

400

photon energy / eV

 molecular surface density as revealed by reference-free TXRF

nanolavei

 traceable quantification based on specific elements as marker (nitrogen)

=== background

functions

Cu La

950

O pile-up

+scatt

1200

1 E-8

1 E-9

1 E-10

1 E-11

200

S

count rate

norm.

functions

FKα

700

photon energy / eV

Anal. Chem. 87, 10117 (2015)

Reference-free XRF and grazing-incidence XRF of buried nanolayers - layer composition and thickness X-ray and IR spectrometry SiO₂ **1** 2.5 nm X-ray standing wave field (XSW) 1 nm/ 3 nm/ 5 nm B₄C incident reflected Substrate: Silicon beam beam SiO₂ 2.5 nm λ 1 nm/ 3 nm/ 5 nm B₄C θ surface layer **Titanium or Nickel** interface 10 nm substrate

design of samples: total-reflection of the incident beam at silicon or at the metal

occurrence of the XSW in boron carbide layer

Substrate: Silicon

objective: determination of the boron carbide layer composition and thickness

comparison of XRF and GIXRF quantification

Anal. Chem. 83, 8623 (2011)

Reference-free XRF and grazing-incidence XRF of

buried nanolayers - layer composition and thickness

depth-dependent modification of the excitation radiation due to XSW

reveal information about the sequence of the layers

- 1. oxygen
- 2. carbon
- 3. boron
- 4. silicon (substrate)

carbon contamination at surface recorded

GIXRF analysis of **B** and As implantation profiles

X-ray and IR spectrometry

GIXRF analysis of **B** and As implantation profiles

PB

Speciation of buried nanolayers by GIXRF-NEXAFS

ightarrow composition and speciation of buried nanolayers

 \rightarrow higher information depth (>> 5nm) than XPS

 \rightarrow parallel variation of incident angle and photon energy

B. Pollakowski

Phys. Rev. B 77, 235408 (2008)

Anal. Chem. 85, 193 (2013)

speciation of buried Ti oxide nanolayers
(the degree of oxidation scales with indices)

Speciation depth profiling by GIXRF-NEXAFS

B. Pollakowski

nanolayer speciation

deconvolution

Ti reference

deconvolution

Ti2O3 reference

steep angle

475

470

incidence and of the photon energy

Anal. Chem. 87, 7705 (2015)

Speciation of buried interfaces by GIXRF-NEXAFS

X-ray and IR spectrometry

Comparison between a shallow and a steep angle
 Interface observable: Ni-C, Ni-N or Ni-Si bonds possible
 B. Pollakowski Anal. Chem. 85, 193 (2013)

Quantitative characterization of nanoelectronics

Quantitative interface characterization and speciation

X-ray and IR spectrometry

XAFS speciation of the S passivated interface as treated and for two high k cap layer

interface speciation

GIXRF-NEXAFS at thin-film Si photovoltaics: probing the chemical state of buried interfaces X-ray and IR spectrometry **GIXRF-NEXAFS** requirements: M BERLIN für Materialien und Energie transmission through a-Si layer detector Eo total reflection at interface Si doped with 0,2 at% P Si:P Ψ_{in} ZnO:AI ca. 2 at.% Al a-Si:P (50 nm) interface SiN Si:N = 3:4ZnO:AI (900 nm) SiN (80 nm) $E_{\bullet} \rightarrow E_{1} \land E_{2}$ **Borofloat** (3.3.mm)M. Pagels, TUB / HZB interface speciation

B. Pollakowski

NIMB 268, 370 (2010)

GIXRF-NEXAFS at thin-film Si photovoltaics: probing the chemical state of buried interfaces

interface speciation

B. Pollakowski

J. Appl. Phys. 113, 044519 (2013)

Elemental depth profiling of CIGS photovoltaics by GIXRF using calibrated instrumentation

• inhomogeneous element depth distribution of In and Ga influences the efficiency

C. Streeck

Appl. Phys. Lett. 103, 113904 (2013)

Elemental depth profiling of CIGS photovoltaics by GIXRF using calibrated instrumentation

X-ray and IR spectrometry

depth profile

C. Streeck

Appl. Phys. Lett. 103, 113904 (2013)

Elemental depth profiling of CIGS photovoltaics by

GIXRF using calibrated instrumentation

BIPM Pilot-study CCQM-P140

CCQM-P140

SURFACE ANALYSIS

Measurement of atomic fractions in Cu(In,Ga)Se₂ Films

Composition / at.%	Certified values KRISS KRESS	Reference-free GIXRF
Cu	$\textbf{23.8} \pm 0.6$	24.0 ± 1.3
In	$\boldsymbol{19.1} \pm 0.6$	$\boldsymbol{19.3} \pm 1.1$
Ga	6.6 ± 0.3	$\textbf{6.3}\pm0.4$
Se	$\textbf{50.6} \pm 1.5$	$\textbf{50.4} \pm 2.8$
d / µm	ca. 2	$\textbf{2.06} \pm 0.09$

C. Streeck

Metrologia, 52 (Tech. Suppl.), 08017 (2015)

Directed development of new energy storage materials: towards in-operando XAFS speciation of cathode films

UHV

Detektor

First step: No ambient air exposure

Employing a thin window argon cell for x-ray spectrometric measurements.

- NEXAFS measurements at different states of charge (not in-situ or operando so far)
- Formation of lithium polysulfides during discharge observed
- Polysulfides disappear during recharging
- After several recharge cycles some of the polysulfides remain ultradünnes Fenster Spectrochim. Acta B 94–95, 22 (2014) pezifische Elemente
- Patent application of

liquid cell (operando studies of batteries)

Calibrated Wavelength-Dispersive Spectrometer (WDS)

disadvantage: low efficiency, moderate detection limit, long integration time

M. Müller

Phys. Rev . A 79, 032503 (2009)

Chemical speciation of nanoscaled materials and

fundamental parameter determination

sample	titanium Ll	uncertainties
metallic Ti	0.59	0.06
0 sccm (Ti)	0.59	0.06
1 sccm (TiO)	0.61	0.09
3 sccm (Ti ₂ O ₃)	0.57	0.09
б sccm (mixed system)	0.54	0.08
9 sccm (TiO ₂)	0.46	0.07

Transition probabilities as a

function of the oxidation state

R. Unterumsberger

Chemical speciation of titanium with a

von Hamos spectrometer based on HAPG crystals

Vanadium lines used for calibration of energy scale

J. Appl. Cryst. 48, 1381 (2015)

Anal. Chem. 81, 1770 (2009)

Calibratable von Hamos spectrometer for XES

X-ray and IR spectrometry

I. Holfelder

operation begin in Aug. 2016

- Reference-free analysis of contamination on Si and of functionalized surfaces
- Quantitative characterization of nanostructured and gradient systems (~2 μm)
- Depth profiling (~500 nm) and interfacial speciation of nanoscaled materials
- New XRS instrumentation available at PTB, TUB, LNE-LNHB, IAEA/ELETTRA
- Calibrated high-resolution x-ray emission spectrometer and novel liquid cells

Further information on reported activities and instrumentation

at EMRP IND07, ENG53 and NEW01 at www.EURAMET.org

<u>Acknowledgements:</u> IMEC, KU Leuven, IPF, LETI, LNHB, HZB, NPL, IWS, AXO, MEMC, Numonyx, Technical Universities Berlin, Darmstadt, Dresden and Ilmenau, & other industrial partners of PTB E-MRS Symposia ,Analytical Techniques for Precise Characterization of Nanomaterials' 2014 / 2017

PTB laboratory at BESSY II: well-known synchrotron radiation for x-ray radiometry and x-ray spectrometry

Phys. Stat. Sol. B 246,1415 (2009)

PTB laboratory at BESSY II: well-known synchrotron radiation for x-ray radiometry and x-ray spectrometry

IR

PTB laboratory at BESSY II: well-known synchrotron radiation for the calibration of x-ray instrumentation

PIB

Total-reflection X-Ray Fluorescence (TXRF) facility for 200 and 300 mm Si wafers using synchrotron radiation

PB

X-ray and IR spectrometry

Analytical Chemistry 79, 7873 (2007)

Total-reflection X-ray Fluorescence (TXRF) analysis:

- non-consistent results from round robin tests (differences up to a factor of ten)
- reason: problems with employed calibration samples (droplet depositions)

contamination

Solid State Phenomena 145-146, 97 and 101 (2009)

Assessment of TXRF calibration samples for

Ni surface contamination

<u>Reason for deviations in contamination results</u>: inhomogeneities and absorption saturation of TXRF calibration droplets
 → "slicing" and "angular scanning" of calibration droplets by reference-free TXRF as validation technique
 M. Müller Solid State Phenomena 187, 291 (2012)

X-ray and IR spectrometry